126 lines
5.2 KiB
Python
Executable File
126 lines
5.2 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
|
|
from pwn import *
|
|
import random
|
|
import string
|
|
import math
|
|
|
|
#context.log_level = "debug"
|
|
|
|
allowed_chars = string.ascii_letters + string.digits + string.punctuation
|
|
|
|
sbox = (
|
|
0x63, 0x7C, 0x77, 0x7B, 0xF2, 0x6B, 0x6F, 0xC5, 0x30, 0x01, 0x67, 0x2B, 0xFE, 0xD7, 0xAB, 0x76,
|
|
0xCA, 0x82, 0xC9, 0x7D, 0xFA, 0x59, 0x47, 0xF0, 0xAD, 0xD4, 0xA2, 0xAF, 0x9C, 0xA4, 0x72, 0xC0,
|
|
0xB7, 0xFD, 0x93, 0x26, 0x36, 0x3F, 0xF7, 0xCC, 0x34, 0xA5, 0xE5, 0xF1, 0x71, 0xD8, 0x31, 0x15,
|
|
0x04, 0xC7, 0x23, 0xC3, 0x18, 0x96, 0x05, 0x9A, 0x07, 0x12, 0x80, 0xE2, 0xEB, 0x27, 0xB2, 0x75,
|
|
0x09, 0x83, 0x2C, 0x1A, 0x1B, 0x6E, 0x5A, 0xA0, 0x52, 0x3B, 0xD6, 0xB3, 0x29, 0xE3, 0x2F, 0x84,
|
|
0x53, 0xD1, 0x00, 0xED, 0x20, 0xFC, 0xB1, 0x5B, 0x6A, 0xCB, 0xBE, 0x39, 0x4A, 0x4C, 0x58, 0xCF,
|
|
0xD0, 0xEF, 0xAA, 0xFB, 0x43, 0x4D, 0x33, 0x85, 0x45, 0xF9, 0x02, 0x7F, 0x50, 0x3C, 0x9F, 0xA8,
|
|
0x51, 0xA3, 0x40, 0x8F, 0x92, 0x9D, 0x38, 0xF5, 0xBC, 0xB6, 0xDA, 0x21, 0x10, 0xFF, 0xF3, 0xD2,
|
|
0xCD, 0x0C, 0x13, 0xEC, 0x5F, 0x97, 0x44, 0x17, 0xC4, 0xA7, 0x7E, 0x3D, 0x64, 0x5D, 0x19, 0x73,
|
|
0x60, 0x81, 0x4F, 0xDC, 0x22, 0x2A, 0x90, 0x88, 0x46, 0xEE, 0xB8, 0x14, 0xDE, 0x5E, 0x0B, 0xDB,
|
|
0xE0, 0x32, 0x3A, 0x0A, 0x49, 0x06, 0x24, 0x5C, 0xC2, 0xD3, 0xAC, 0x62, 0x91, 0x95, 0xE4, 0x79,
|
|
0xE7, 0xC8, 0x37, 0x6D, 0x8D, 0xD5, 0x4E, 0xA9, 0x6C, 0x56, 0xF4, 0xEA, 0x65, 0x7A, 0xAE, 0x08,
|
|
0xBA, 0x78, 0x25, 0x2E, 0x1C, 0xA6, 0xB4, 0xC6, 0xE8, 0xDD, 0x74, 0x1F, 0x4B, 0xBD, 0x8B, 0x8A,
|
|
0x70, 0x3E, 0xB5, 0x66, 0x48, 0x03, 0xF6, 0x0E, 0x61, 0x35, 0x57, 0xB9, 0x86, 0xC1, 0x1D, 0x9E,
|
|
0xE1, 0xF8, 0x98, 0x11, 0x69, 0xD9, 0x8E, 0x94, 0x9B, 0x1E, 0x87, 0xE9, 0xCE, 0x55, 0x28, 0xDF,
|
|
0x8C, 0xA1, 0x89, 0x0D, 0xBF, 0xE6, 0x42, 0x68, 0x41, 0x99, 0x2D, 0x0F, 0xB0, 0x54, 0xBB, 0x16
|
|
)
|
|
|
|
def gather_measurements(r, amount):
|
|
progress = log.progress("Gathering measurements")
|
|
measurements = {}
|
|
for i in range(amount):
|
|
if i & 0xFF == 0:
|
|
progress.status("{}/{}".format(i, amount))
|
|
r.send(b"profiler_reset\n")
|
|
r.recvuntil(b"> ")
|
|
password = ''.join(random.choices(allowed_chars, k=16)).encode("ascii")
|
|
r.send(b"login\n")
|
|
r.send(password)
|
|
r.send(b"\n")
|
|
r.send(password)
|
|
r.send(b"\n")
|
|
r.recvuntil(b"> ")
|
|
r.send(b"profiler_print\n")
|
|
response = r.recvuntil(b"\n> ", drop=True)
|
|
response = response.decode("ascii")
|
|
for line in response.splitlines():
|
|
line = line.split(" ")
|
|
name = line[0]
|
|
no_invocations = int(line[-1])
|
|
if name == "gf_reduce":
|
|
measurements[password] = no_invocations
|
|
break
|
|
progress.success("{amount}/{amount}".format(amount=amount))
|
|
return measurements
|
|
|
|
def mean(data):
|
|
return sum(data) / len(data)
|
|
|
|
def variance(data, mean):
|
|
result = 0
|
|
for value in data:
|
|
result += (value - mean) ** 2
|
|
return result / len(data)
|
|
|
|
def t_test(group_big, group_small):
|
|
mean_big = mean(group_big)
|
|
variance_big = variance(group_big, mean_big)
|
|
mean_small = mean(group_small)
|
|
variance_small = variance(group_small, mean_small)
|
|
return (mean_big - mean_small) / math.sqrt(variance_big / len(group_big) + variance_small / len(group_small))
|
|
|
|
r = process("/home/manuel/wolke/Projects/secutech_authenticator/build/default/secutech")
|
|
|
|
r.recvuntil(b"> ")
|
|
|
|
measurements = {}
|
|
|
|
key = []
|
|
|
|
# We keep gathering measurements until we are certain enoguh which key the correct one is
|
|
while len(key) < 16:
|
|
measurements.update(gather_measurements(r, 1000))
|
|
log.info("Total number of unique measurements gathered: {}".format(len(measurements)))
|
|
|
|
# This attack allows us to test each aes key byte independently
|
|
for key_byte in range(len(key), 16):
|
|
progress = log.progress("Attacking key byte {:2}".format(key_byte))
|
|
|
|
t_values = []
|
|
|
|
# We guess each possible value for the key byte. We then calculate the key addition and the byte subsitution for that byte.
|
|
# (We leave out shift rows because shifting the rows does not change the timing)
|
|
# Then we predict whether the calulation will be slow or fast based on that result and check which of the key guesses best fit our prediction.
|
|
# That Guess is most likely the correct value for the key byte.
|
|
for key_guess in range(0x100):
|
|
group_fast = []
|
|
group_slow = []
|
|
for password, no_invocations in measurements.items():
|
|
# If the msb is set the reduction function has to be called making code execution slower
|
|
is_fast = sbox[password[key_byte] ^ key_guess] & 0x80 == 0
|
|
# Sort the measurement into one of the groups based on our prediction
|
|
if is_fast:
|
|
group_fast.append(no_invocations)
|
|
else:
|
|
group_slow.append(no_invocations)
|
|
|
|
# The further apart the measurements in these groups are the more likely it is that we found the correct value for the key byte.
|
|
# We can calculate the certainty using Welch's t-test. If the result of the t-test is >4.5 we can be very certain we found the correct value.
|
|
t_values.append(t_test(group_slow, group_fast))
|
|
|
|
# The biggest value in the list is our best guess for the value
|
|
max_t_value = max(t_values)
|
|
candidate = t_values.index(max_t_value)
|
|
progress.success("{:02X} ({:.2})".format(candidate, max_t_value))
|
|
|
|
# Check if we are certain enough to add this result to the key. If not stop attacking and gather more measurements
|
|
if max_t_value >= 4.5:
|
|
key.append(candidate)
|
|
else:
|
|
break
|
|
|
|
print("Key:", " ".join(["{:02X}".format(k) for k in key]))
|